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STABILITY OF COMPLEX VECTOR BUNDLES

PAOLO DE BARTOLOMEIS & GANG TIAN

0. Introduction

The notion of stability plays a central role in complex and algebraic
geometry.

It was introduced by D. Mumford [5] and F. Takemoto [10] for the
study of the moduli space of holomorphic vector bundles; S. Kobayshi
and M. Liibke found that for irreducible bundles the existence of a
Hermitian-Einstein metric is a sufficient condition for stability, and
a major achievement of the theory has consisted in the work of M.
Narashimhan and C. Seshadri for algebraic curves, S. Donaldson in the
case of algebraic manifolds, K. Uhlenbeck and S.T. Yau for general
Kéahler manifolds (easily extended to regularized Hermitian n-manifolds,
i.e., whose Kihler form 7 satisfies 80n™"~! = 0) proving the existence of
a Hermitian-Einstein connection on stable holomorphic vector bundles
([6], [1], [12]). Further generalization to Higgs bundles can be found in
[2] and [9).

These results have made the tools of differential geometry available
to complex and algebraic geometry, leading to several important ap-
plications, e.g., a much more extensive comprehension of Bogomolov-
Gieseker type inequalities and the characterization of flat vector bun-
dles. On the other hand, a general theory of the existence of holomor-
phic structures on complex bundles is far from being understood, and
therefore it is very natural to try to extend the differential geometric
characterization of stability to complex bundles with an unnecessarily
integrable almost complex structure.

The first main result of the present paper is the following.

Theorem 0.1. Assume a complez vector bundle over a compact
almost Hermitian regularized manifold is equipped with a stable almost
complex structure. Then it admits a Hermitian-Einstein connection.

The notion of stability which we consider is the following: we require
that u(F) < u(E) holds for any J-holomorfic subbundle F C E which
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is regular outside a set of Hausdorff codimension at least four and can
be extended across the singular set along any local J-holomorphic curve
not contained in the singular set. We conjecture that this notion of sta-
bility which is equivalent to the one obtained by considering F ranging
on J-holomorphic subbundles of p~!(E) where p : M — M is a mod-
ification. In the case where the base manifold is complex and F is a
holomorphic bundle, this follows from the results of [12]. We expect to
prove that this is also the case where the base manifold is two complex
dimensional. The plan of th paper is the following: in sections 1 and 2
we extensively investigate the notion of bundle almost complex struc-
ture (bacs); in section 3, looking for the best bacs, we decompose the
Yang-Mills functional Y M, obtaining that critical points are character-
ized by the condition 25:93’2 + 24*Q2° — i3, ,H,, = 0 and, moreover,
YM(w) > €(E) (a topological constant) with equality if and only if
022 = 0 and H, = 0; therefore the Hermite-Einstein condition H,, =0
arises naturally in the search of minima for Y M. In section 4 we define
stable bacs and we start the proof of our main theorem: by utilizing an
improved version of Uhlenbeck-Yau and Simpson’s techniques, we fix a
Hermitian structure A, consider the evolution equation h; ' £h, = —H,,
and show that the solution converges to a Hermite-Einstein structure,
unless a flag of weakly J-holomorphic subbundles is produced, one of
which contradicts the stability assumption. The proof here follows from
the arguments in [9], but several modifications are needed, due to the
nonintegrability of the base manifold. The end of the proof depends on
the regularity results for weakly J-holomorphic subbundles. We obtain
this as a consequence of a regularity theory for weakly J-holomorphic
map developped in section 5. In particular we prove the following.

Theorem 0.2. Let (M, Juy,g), (N, In,h) be two almost Hermitian
manifolds with dimg M = 2n, and assume there exists a bounded closed
2-form a on N such that o' > 0 uniformly. Let 6 : M — N be a
L2-weakly (Jpr, Jn)-holomorphic map. Then there exists a closed subset
S C M with Han_4(S) < 400, such that o is smooth on M /S; moreover,
for any zeS, any local J-holomorphic curve K through x not contained
in S, 0|x—{z} extends smoothly to K.

The proof of Theorem 0.2 uses some ideas from [8]. Note that
(N, Jn,h,a) is a tamed symplectic manifold in the terminology of
[3]. We also prove that, if the target manifold has no rational curves,
then a L?-weakly J-holomorphic map is regular. In case dimgr M = 4,
we expect to prove in a forthcoming paper that there exists a modifica-
tion M of M, obtained by blowing up M succesively at isolated points,
such that ¢ can be extended to M to be a smooth J-holomorphic map.
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The difficultes with higher dimensional cases are:

1. how to prove that the singular set is a J-invariant subvariety in a
suitable sense;

2. how to prove Hironaka’s theorem for resolution of singularities in
the nonintegrable case.

The first author is partially supported by Italian murst, and the sec-
ond author by a grant from NSF and an Alfred Sloan fellowship.

1. Bundle almost complex structures

In this paragraph we gather some basic definitions and facts about
bundle almost complex structures. Let (M, Jy) be a n-dimensional
almost complex manifold.

Definition 1.1. A complex vector bundle (E, J) of (complex) rank
r over M is a real vector bundle E of rank 2r over M equipped with a
section J of End(E) such that J2? = —idg.

Given a complex vector bundle E of rank r, we can consider the
principal GL(r,C)-bundle C(E) of complex linear frames on E;

thus

E = C(F) Xgr(rc R*, where GL(r,C) acts on R*" via
the standard real representation p : GL(r,C) — GL(2r, R);

" Definition 1.2. A bundle almost complex structure (bacs) on C(E)
is an almost complex structure J on C(F) such that:
(1)  the bundle protection 7 : C(E) — M is (J, Jar)-holomorphic;
(2) J induces the standard integrable almost complex structure
Js on the fibres;
(3) GL(r,C) acts J-holomorphically on C(E).

B(C(E)) will denote the set of bacs on C(FE).
We can define

TP(C(B) = L™ (AP1(B)),

where L : T*(C(E)) — A*(E) is the standard isomorphism between
tensorial R?"-valued forms on C(E) and E-valued forms on M (cf.
[4]), therefore we have

(1.2.1) T (C(E) = @ TUC(E)).

pHo=r

It is easy to check that, if a bacs is assigned on C(E), then (1.2.1)
corresponds precisely to the induced decomposition.
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Let H(C(E)) be the set of all linear differential operators do(p) :
TP9(C(E)) — TP (C(E)) satisfying the following O-Leibnitz rule:
for every f ¢ C*(M),a ¢ TP4(C(E))

Do (fla = n*(@uf) Aa+ 7 (f)Iome.

We have the following.

Proposition 1.3. Given a J ¢ B(C(E)) the induced operator 0;
maps TP1(C(E)) into TP (C(E)) and so, in particular, it belongs to
H(C(E)); vice versa, given_gc(E)_ e H(C(E)), there emists a_unigue
J € B(C(E)) such that 0; = Oc(xy. Then the map J — 0; is a
bijection between B(C(E)) and H(C(E)).

Proof. Assume J ¢ B(C(FE)) is given; since TP?(C(E)) is locally
generated by elements of the form 7*(a) ® f for @ £ AP? (M) and
f e T°(C(E)), it is enough to show that

3; : T°(C(E)) = T (C(E)),

which follows immediately from the fact that f ¢ T°(C(F)) is holomor-
phic when restricted to the fibres. Vice versa, assume 8 = d¢(p) € H(E)
is given. Then an almost complex structure J on C(E) is uniquely de-
fined by means of the relations

for every f ¢ T°(C(E)) df(J(X)) = i(20f — df)(X).

It is easy to check that J & B(C(E)) and, by construction 8y = d¢(g).-
Now we have the following.
Lemma 1.4. LetJ ¢ B(C(F)) andw e C(C(E)), where C(C(FE))
denotes the space of connection 1-forms on C(E). Then

w® ¢ TOYC(E)), gl(r,C), ad)

and consequently
w9 ¢ C(C(E)).

Proof. Letu ¢ C(E),X ¢ T,C(E),a ¢ GL(r,C). Then we have
(Ra)" (WD) [u}(X) =w®[ua]((Ra).(X))

= solual (Ra).(X) + i (R,).(X))

=-;—¢g[ua]((Ra)*(X ) +i(Ra).(J X))

= ad(a™) ) () + iwlu] (X))
=ad(a™)w@D [u](X).
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Moreover, if Y & gi(r,C), then
(0,1) x\ __ 1 * - * — 1 * *\ __
WOV u])(Y™) = Ew[u](Y +iJ(Y*)) = Ew[u](Y -Y*)=0.

Consequently, we have

Proposition 1.5. Given w ¢ C(C(E)), there exists unique J ¢
B(C(E)) for which w is of type (1,0).

Proof. Letu ¢ C(E)and X ¢ T,C(E), and write X = X 4 X
according to w. Then define J as follows:

Jul(X) = (7). © Jar 0 ) [ul (X)) + Ts[ul(X™).

It is clear that J ¢ B(C(FE)) and w is of type (1,0) with respect to it;
the uniqueness is obvious.
Therefore, we have just constructed a map x : C(C(E)) — B(C(E));
this is not injective but is surjective because of Lemma 1.4.
Definition 1.6. Given J ¢ B(C(E)), we set

C7°(C(E)) = x"}(I);

ie., Cy°(C(E)) is the set of all connection 1-forms in C(E) that are of
type (1,0) with respect to J.

By means of the previous result, we can easily prove the following
statement, which has nothing to do with connections:

Proposition 1.7. Let J & B(C(E)). Then its Nijenhuis tensor
N(J) is horizontal. Moreover, if Jyr is integrable, then N(J) is vertical-
valued.

Proof. . Let w ¢ C;°(C(E)).

a. If both X and Y are vertical, then

N(J)(X,Y) = N(Js)(X,Y) =0,

because Jg is integrable.

b. If X is vertical and Y is horizontal, then we can assume X = A*
for A € gl(r,C) and Y = Z (horizontal lifting) for Z ¢ H(M). Since
clearly JY = (Jp Z), we have

N(J)(X,Y) =[JX,JY]-[X,Y]- J[JX,Y] - JX,JY]
([)(iA)*7 (JMZ)] - [A*a Z] - J[(ZA)*’ Z] - J[A*a (JMZ)]

I
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this proves that N(J) is horizontal. Moreover, if X = ZandY =W
for Z,W ¢ H(M), then, since [Z, W] = [Z, W]+ [Z,W]®,
N(J)(X,Y)
= [(JMZ): (JMWn - [Za W] - J[(JMZ): W] - J[Za (JMWH
= (N(Ju)(Z, W)Y + vert.

We have now
Proposition 1.8. Let J ¢ B(C(E)) and let w ¢ Cy°(C(E)). Then

(1.8.1) (D))" = 8,,
and consequently

D, : T°(C(E)) — T'(C(E))
splits as
(1.8.2) D, =0, +9d;,
where 8, := (D,)'°. More generally, we have that

D, : TP(C(E)) — TP (C(E))
decomposes as
D,=8,+98 +A4,

where A : TPY(C(E)) — TP YC(E)) & TP~19+2(C(E)) is a zero
order operator, depending only on N(Jy), and vanishing identically
when Jy is integrable. In particular, ifa € T*(C(E)), then A(e)(X,Y) =

a(N(J)(X,Y)) = a(Z), where m.(Z) = N(Ju) (7. (X), 7, (Y)).
Proof. Given a ¢ T?(C(FE)), we have:

DYl = (D,a)Po* = (da)P* + (w A )T = (da)P**! = J,a.

Moreover, if @ = 7*(y) ® f, with v ¢ AP (M) and f & T°(C(E)),
then

Dyo=7"(dy) ® f+ (1) 7" (v) A D, f-
Since dy = dyy + Ony + Ay (), taking into account the fact that  is
(J, Jar)-holomorphic we have

Dya= 7" (0my+ Ouy +Au(7) ® f + (=177 (v) A (8uf + 05 )
= 7 (0u7) ® f+ (-1)P*7* () A (O..f)
+m*(Ouy) ® f + (=1)PHm* () A (8sF)
+m*(Apn (7)) ® f = dpa+ 00 + A(a).

Note also for given w ¢ C(C(E)) and a ¢ T°(C(E)), gi(r,C),ad),

(1.8.3) 3x(¢d+a) = gx(w) + oY,
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The following is another important consequence of the previous results:
Proposition 1.9. Let J ¢ C;y°(C(E)). Then

(191) Qi,’l = 5.](4),

(1.9.2) Q02 = jzw o N(J).

Proof. We have:

QL = (D) = (o) = Byw,
and :
Q87 = (D) = (dw)°”.
If X and Y are horizontal, then

00%(X,Y)
= (dw)"*(X,Y) = %dw(X +iJX,Y +iJY)

= %(dw(X,Y) — dw(JX,JY) + idw(JX,Y) + idw(X, JY))

= — 21X, Y]) — w(lTX, TY) + (T X, V) +iw(X, TY)

= %(w([JX, JY]) —w(X,Y]) - w(J[JX,Y]) —w(J[X,JY])
= FW(NI)X,Y)).

Combining Propositions 1.8 and 1.9 gives immediately
Corollary 1.10. Let J ¢ B(C(E)). Then

(a)  If Jur is integrable, then Q%2 is independent of the choice of
w e CY°(C(E)).

(b)  If Ju is integrable, then Q%% =0 for every w e Cy°(C(E)).

(c)  If Ju is integrable, then J is integrable if and only if Q%2 =0
for w € CYY(C(E)).

We have seen in Proposition 1.3 that bacs on C(E) are in one-to-one
correspondence with elements of #(C(E)); #(C(E)) is also in one-to-
one correspondence with the set 7:£(E) of linear differential operators
g : NPY(E) — AP9TY(E), satisfying the following 8-Leibnitz rule:
for every f ¢ C®(M),a € AP (E),

Opfa=0yfAa+ figao.
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This correspondence is obviously given by 0 = L o EC(E)) o L™t
and, given an (1,0)-connection form w, we have the splitting V = dy +
Og of the induced exterior covariant differential operator, exactly as in
Proposition 1.7.

The discription of bacs’s through the elements of #(E) makes espe-
cially easy to perform some functorial constructions; in fact we have:

Proposition 1.11.

(a) Assume a bacs is given on C(E). Then a bacs is induced on
C(E*).

(b) Assume bacs’s are given on C(E,) and C(E;). Then bacs’s are
induced in C(E, & E,) and C(E, ® Es).

Proof.

(a) Let 05 : AP9(E) — AP9+1(E) be the linear operator associated
with the given bacs. Then define O« : API(E*) — APITI(E™)
by means of the relation

Oy <T5,0 >=< O0g7",0 >+ < 7%,050 > .

(b) Just set
5E169E'2 = 6E1 57 aEz
and
9r,98, = Op, ® 0p,,
where, of course, (Op, ® 05,)(0 ®T) = Op,0 ® T +0 ® IE,T.

We need the following four definitions.

Definition 1.12. Let J ¢ B(C(FE)). Then a section o of E is said
to be J-holomorphic if it satisfies Ogo = 0; this of course,-is equivalent
to say that, if f := L™!(0) ¢ T°(C(E)), then 8;f = 0.

Definition 1.13. Assume bacs’s assigned on C(E,) and C(E,); a
bundle morphism ¢ : E;, —> E, is said to be J-holomorphic if 5E1*® B0 =
0.

Definition 1.14. Assume r = p+q and let ¥ C E be a real
vector bundle of rank 2p. We say that F' is a complex subbundle of
(complex) rank p of the complex bundle (E, J) if Jir is a section of
End(F); it is clear that, in this case, the quotient bundle E/F has an
induced structure of complex vector bundle.

Definition 1.15. Let J ¢ B(C(F)). Then a complex subbundle
F C E is said to be a J-holomorphic subbundle if 9z maps A?¢(F) into
APITH(F).

Remark 1.16. If we consider the complex Grassmann manifold of
complex p-planes in C”,

GTP(O) = GL(Ta C)/LQ,P (C):
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then a complex subbundle F' C FE of rank p corresponds to a section of
the complex Grassmann bundle

Gry(E) := C(E)/L;,(C) = C(E) xgrirg Gry(C").

Moreover, if J ¢ B(C(E)) is given, then an acs is induced on GE(E);
it is easy to check that J-holomorphic subbundles correspond to J-
holomorphic sections of GS(E).

Note also that, if F' is a J-holomorphic subbundle, then

(a) J induces bacs’s both on C(F) and C(E/F);
(b) 6E|Ap.q(1=) = 0Op.

We have now the following two results (the proof of which is essen-
tially strightforward)

Proposition 1.17. Let J ¢ B(C(E)), and let F C E be a
J-holomorphic subbundle; then the inclusion map i : F — E is J-
holomorphic.

Proposition 1.18. Assume bacs’s are assigned on C(E;) and C(E,),
and let ¢ . E; — E, be a J-holomorphic bundle morphism with con-
stant rank. Then ker¢ and Im ¢ are J-holomorphic subbundle and, con-
sequently, C(cokerd) is equipped with a bacs.

Definition 1.21. Let J ¢ B(C(E)); then FE is said to be J-simple if
any J-holomorphic endomorphism is the form Aidg, with A ¢ C*(M)
(and therefore satisfying 9y A = 0).

An important fact is inclosed in

Proposition 1.21. Let J ¢ B(C(E)); then, generically

(a)  there are no local J-holomorphic sections of E;
(b) E is simple;
(c)  there are no local J-holomorphic subbundles of E.

2. Hermitian structures

Let now (E, J) be a complex bundle of rank r over M.

Let J ¢ B(C(E)), assume a Hermitian structure h is assigned on E
and let U,(FE) be the principal U(r)-bundle of h-unitary frames on FE;
we have the following fundamental result:

Proposition 2.1. There exists a unique connection on U,(E) such
that its connection 1-form, when eztended to a connection form on C(E)
is of type (1,0) (in other words C1°(C(E))NC(UL(E)) consists of a single
element); this connection is called the canonical Hermitian connection.

Proof. Let h: C(E) — GL(r,C) be defined as

h(u) =77 (u*(B);
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(ie if u = {01, - ,0,,J01,--+,J0,}, then h(u) = (h(o;,0%)
(017J0k))1§j,k§r)- Then

(1) Un(B) = {u ¢ C(B) | h(w) = I}, A A
(2) for every u ¢ C(E),a ¢ GL(r,C) we have h(ua) =* ah(u)a,
and consequently: R
(@) (hoR,).[u] =*ah, [u]?’ . .
(b) if X e gi(r,C) then h,[u](X*) =t Xh(u) + h(u)X.

Set
(2.1.1) wy, := h~18sh.

It is easy to check that w, e C;°(C(E)); clearly wy reduces to an
element of C(U,(F)): in fact, if u ¢ U,(E), then

(2.1.2) kerwy[u] = T,Ux(E) N JT,Ux(E);
the uniqueness follows from the fact that
(2.1.3) T (Un(E),u(r)) N T"°(C(B), gi(r, C)) = {0},

which is an easy consequence of the relation u(r) Niu(r) = {0}.

Therefore we have:

Corollory 2.2. There is a one-to-one correspondence between the set
B(C(E)) of bacs on C(E) and the affine space C(Un(FE)) of connection
on Uh (E)

_ In order to simplify our notation, from now on we will identify A and
h.

The following proposition describes the behaviour of the canonical
Hermitian connection when the Hermitian structure changes.

Proposition 2.3. Let k be another Hermitian structure on E and
let g := h™1k; then

(1)
(2.3.1) Wy = wp +9'0,, 9
Therefore, if Jur is integrable, then

(2)
(2.3.2) 002 = Q02

and the (0,2)-component of the curvature form is independent of the
Hermatian structure, i.e.,

(3)
(2.3.3) Q% = g7102%.
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Proof.
(1) We have
wy, = k7 05k = (hg)'0s(hg) = g7*h™'[(85h)g + h(8;9)]
=g ' wng+ 97 (Oung — [wh,9)) =wh + 97" Ouy g,

(2) which follows directly from (1.9.2.) or the (0,2)-component of
the relation

- 1. _ _
(2:34) Qo = Quy + Do (9700,9) + 5197009, 97 009
(3) Taking the (2,0)-component of (2.3.4) yields

Q20 =Q2°+0,,(970,,9) + 90,9 AN g 009
=02 — 97009 Ng 009+ 9702, 9+ 9709 A9 D09
=g, + 97100, 9] = 971 Q9.
Let (E, J, h) be a complex vector bundle of rank r = p + ¢ equipped
with a Hermitiann structure, and let ' C E be a complex subbundle of
rank p. Then S := F* is a complex subbundle of E with rank S = ¢

and E = F& S, and U, (F)+ U, (S) is a U(p) x U(g)-reduction of U, (E)
with embedding

i : Up(F) + Up(S) — Un(E).

Let fr: (F) + Uh(S) — Uh(F) andvfs : Uh(F) + Uh(S) — Uh(S)
be the natural maps, and let w ¢ C(U,(E)). Then ¢*(w) splits as

Fw=o+a

where
@ € C(Un(F) + Un(8)),
with

o= fi@r) + f3tos) = [FEF 0]
for & € C(Un(F)) and ws € C(Ux(S)), and

[0 -7
=l 0

g £ Tl(Uh(F) + Uh(s)7Mq,P(C),p)v

for
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where p : U(p) x U(g) — Aut(M,,(C)) is given by p(4, B)}(X) =
BX A™'. Therefore, on Uy (F) + Uy (S), .
f#(0,) ~tlo0]  -Dip
(2.3.5) Q, =
Dyo f.;(Q'ws) - %[Uat U]

(2.3.5) is called the Hermitian Codazzi-Mainardi equation, and o the
second fundumental form of F in E. Therefore —c is the second fun-
dumental form of § in E.

It is immediate to check that, if s € A° (F), then V,s decomposes
according to the splitting A'(E) = A'(F) & AY(S) as
(2.3.6) Vs = Vs + L(o)s.

Now we have

Proposition 2.4. Let (E, J, h) be a Hermitian bundle, let F C E be
a complez subbundle, and let J ¢ B(C(E)). Then the following facts
are equivalent:

(a) F is a J-holomorphic subbundle,
(b) the orthogonal projection 0r : E — F satisfies

)
(2.4.1) (I - 0r) o Operlr =0,

(c) the second fundumental form o od F in E with respect to the
canonical Hermitian connection is of type (1,0) (in the sense
that L(o) € AV (Hom(F,F1)).

Proof. (a) < (b): Let t ¢ A°(E). Therefore 8ot ¢ A°(F). Since
85(0F o t) = (Op+erbr)(t) + 0r(9xt),
we obtain
(I —0r) 0 8p(0p ot) = (I — bF) 0 Iprardr(t),
and therefore :

Og maps A°(F) into A (F) <& (I —0F)odg-grfr =0.

(a) & (c) : Let s € A°(F). From (2.3.6), in particular, it follows
Ips = (Vars)™ + (L(0)(s5))™,

so that B
(L(o)(s))*! =0« Ogs ¢ A™(F).

Remark 2.5. If pp:= L7'(6p), then (2.4.1) is equivalent to
(2.5.1) 0upr (I — pr) = 0.
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Let (E,J,h) be a Hermitian vector bundle of rank r over M, let
s,t ¢ T°(C(E),Cr), and set
(2.5.2) < s,t:=>"5ht.
Then

< s,t> (ua) ="' s(ua)h(ua)t(ua)

< s,t > (u) is a well defineded function on M, and from the very
definition of A it follows that

(2.5.3) < s,t >= h(L(s), L(¢)).

More generally, we obtain

Definition 2.6. Assume M is equipped with a Riemannian struc-
ture g; then extend <, > to T?(C(FE),C") in the following way:

If ¢, ¢ TP(C(E),C") are of the form ¢ = 7*(p) ® 5,9 = 7*(v) @ t,
for u,v € AP(M),s,t ¢ T°(C(E),Cr), then set

< ¢, >=g(u,v) <s,t>,

and extend to the general case by the Hermitian bilinearity.
Again <,> is a well defined function on M, and for every

d, ¥ ¢ TP(C(E),C") we have

(2.6.1) < ¢, % >= (9 ® h)(L(¢), L(¢))-
Let now s ¢ T°(C(E),gl(r, (C) ad), and define s* by the relation
(2.6.2) s# (u) = B (w) s (u)h(u).

It is easy to check that s* & T°(C(E),gl(r,C),ad). If t ¢
T°(C(E),gl(r,C),ad), then set

(2.6.3) < s,t>=tr st¥,

Again the following hold:

(a) <,> is well defined function on M.

(b) Whenever M is equipped with a Riemannian structure, <, > can
be extended to

TP(C(E), gi(r,C), ad).

(c) A relation analogous to (2.6.1) holds.

(d) If a € TP(C(E),gl(r,C),ad), then a* is obviously defined by
the relation



244 P. DE BARTOLOMEIS & G. TIAN

(264) a#(Xla"' ,Xp);:(a(xla"' aXP))#'
Note that @ ¢ TP & a# & T9P; in particular,
(2.6.5) Q20 = —(0.2)*

for a Hermitian structure h on E.

3. Yang-Mills functional, Donaldson’s Lagrangian
and the Hermite-Einstein condition

From now on, let (M, Jy,g) be a compact n-dimensional almost Her-
mitian manifold whose Kahler form 7 satisfies dn"~' = 0.
Let (E, J,h) be a Hermitian vector bundle of rank r over M. Given
w & C(Un(FE)), we set:
KM := AQL'  (contraction with 1),
o, :=tr K},
1
deg(B) = [ a(B) Ant=5— [ o,
M 2mn Sy
1
,U,(E) = _deg(E)7

k() = 2rnu(E)

" Vol (M)’

H, := K}' —ik(E)I; H, is called the Hermite-Yang-Mills curvature.

We have the following decomposition result for the Yang-Mills func-
tional (cf. also [11]).

Proposition 3.1. Let YM : C(U,(E)) — Rt be the Yang-Mills
functional, i.e.,

1
YM@)i=3 [ 19 du(g);
M
then
.
(11) YM@)=eB)+2 [ |02 P dule) +5 [ | Ho I duo)
M
where

«(B) = 2nn(n~1) [ (eu(B) ~EE) A"+ 5 [ K(B)auo).

Proof. Given w ¢ C(U,(E)), we have
Q, =00+ (2% + Q%) and | Q, [*=] QL' > +2 ] Q22 2.
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Let p; and p, be the first two Chern’s polinomials. Then
(2¢2(E) — ci(E)) A" ?
=(2p2(%) — 11 () AP1(QW)) A2
=(2p2(Q) — p1 (W) Ap2 ()2 A2
=(2p(25") — (") AP QL)) A2
+ 2(2p2 (2% A Q2%) — py (93°) A (222)) A2,
now

(2p2(QL) — P (QLY) AP (QLY)) A2
= (4n*n(n —1))71(| QL |2 — | K P,

202 (2° A Q%) — pr (2°) Ay (Q)°) = 4 — Z(Q” kA (20
Jk=1
and
(sz’o)jk - Qaﬁ]ke A oﬁ a'nd(ﬂg,z) T Q&'ﬁkje A eﬁa
where {6,,---,0,} is an orthonormal coframe in M such that
N =1 n.s 0 A bz. We have also

0,2 a0 ,0
Q_ﬁk] —Qaﬁjk

Therefore

n(n = 1) 3905 A (@) Ar™?

=n(n—1)) Q02 0. A0, AO5 A 05 A"

1 n
=35 Z(nggkﬂozm Qigjkﬂojk])
OB =219
(2p2(22° A Q2?) — 21 (2°) AP (90%)) A2
= —(4n*n(n ~ 1)) | Q% > 9",
(2¢2(E) — &(E)) A2
= (n*n(n — 1) (| QU [P~ | KL P =21 987 )
or
QL 12
=4n’n(n —1)(2c2(E) — G(B) A" 2+ 2| Q22 P + | K )™

Moreover
K:;l =H, +ik(E)I,
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and therefore
J VRS P dute) = [ 1 H P dute) +7 [ B(E)du(o)

Hence the proof of (3.1.1) is complete.

The following two propositions are immediate consequences of Propo-
sition 3.1.

Corollary 3.2. For every w € C(U,(FE)) we have

YM(w) > e(E),
which the equality holds if and only if
Q%2 =0 and H, =0.

Corollary 3.3. If H, =0, then

2 n—2 1 0,2 |2
] Crea®) (- = DEE) A+ s | 027

— [ tr Q57 [*)dp(g) 20,
with equality iff
Ol =itr QUL

We have also
Proposition 3.4. w & C(Uy(FE)) is a critical point for the
Yang-Mills functional if and only if it satisfies

(3.4.1) 20, Q%2 —24*Q*° - §,H,, = 0.

In particular, this is the case if w is a critical point both for
w '—>/ | Q57 [* du(g)
M

and
w l—)/ | H, | du(g).
M

Proof. Consider in C(U,(F)) a curve t — w; = w + oy with ap =0
and v = $oy,_,. Then
Qu, = Q2% + £(D,0™" + Av'°) + o(t)

and
H,, = H, + (100" — id:v"°) + o(2).
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Consequently, from Proposition 3.1 it follows directly that

d
EYM(wt)ltzo = / < D8, v > dul(g)
M

= / 2Re(< 28,0%% + 24*Q°%2 — {5, H,,,v>' > du(g),
M

and so w is a critical point if and only if it satisfies (3.4.1).

Proposition 3.5. Let w ¢ C(Uy(E)) and let J ¢ B(C(E)) be the
corresponding bacs. If E is J-simple, then D H, = 0 is equivalent to
H,=0.

Proof. From D,H, = 0 it follows that the eigenvalues of H, are
constant, so that £ decomposes J-holomorphically into eigenbundles; by
J-simplicity, this decomposition is trivial implying that H, = 0 since
Sy tr H,n™ =0.

One of the main purposes of this paper is to characterize those ele-
ments of B(C(E)) for which there exists a Hermite-Einstein structure
h, i.e., a Hermitian structure satisfying the Hermite-Einstein condition
H,, =0. Assume from now on that 8,057 = 0.

We need to introduce some further machineries (cf. [9]).

Let J ¢ B(C(E)), Herm(E) := {Hermitian structure on E},, and
fix h ¢ Herm(E).

(1) Let
Su(E) :={p ¢ T°(C(E),gl(r,C),ad) | p = p*}.
If s ¢ Su(E), then for every x ¢ M we can choose C :
7~ 1(z) — GL(r,C) such that
s(u) = C™Hu) A C(u)

with
Aq

C(ua) = C(u)a and C(u)C*(u) = hu).
Moreover
| 5(u)? |= tr A%

in general, if p ¢ T(C(E),gl(r,C),ad), then po(u) :=
C(u)p(u)C~1(u) depends only on z and < p,q >= tr pcdg.
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(2) a. Given ¢ ¢ C*(R,R) and s ¢ Sy(E),z,C as before, we set
p(s) 1= Cp(A)C
where, of course,

‘P()‘l)
p(A) =

o(Ar)

b. Given ® ¢ C®(R x RR),s & Si(F) as before and
p £ T°(C(E), gl(r,C), ad), we set

B[s](p) := C™'®(A, c)C,

where
Q(A’ﬁC) = ((I)()‘Ja )‘k)(ﬁC)jk)'
The following are clear:

i) (s) and ®[s](p) are independent of the choice of C,

i) < ®[sl(p),p >= Yoy 2(A5, M) | (Bo)se -
c. Finally, if p ¢ C°(R, R), then we set

P(A)—p(p if A
6<p(/\,u)={ e X 7_&“’
¢'(A), if A=p.

A straightforward computation gives:
8p[s](Ds) = Bep(s).

(3) Let S(E) :={s € Su(E) | [y, trsn™ = 0} and define Donald-
son’s Lagrangian

Vi : SHE) — R as follows:

Vi(s) :=/ <is,H>n"+/ < 5, AB(®[s](B,,5)) > 1™,
M M
where
. et +A-1
(A p) = p(A— p) with ¢()) := %z and H=H,,.

The basic property of Donaldson’s Lagrangian is contained in
Lemma 3.6. Givenr ¢ SP(E) and s ¢ Sp..(E), we have

(3.6.1) Vi(loge™e®) = Vi(r) + Viher (3);
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equivalently, if h,k,7 ¢ Herm(FE) and M(h,k) := V,(log h™1k), then
(3.6.2) M(h,j) = M(h,k) + M(k,,j).

Proof. First of all we have the following two relations:

0? 9 rys
(3.6.3) theﬂ(ys)l(o,o) = axayVh(lOg e’"e? )I(0,0)v
0? 0?

6.4 —V = Vhesr ,0)}
(3.6.4) 920y 2 ((Z + Y)7))(z0) 920y " )iz
in fact

0? . =
o a Vhe" (ys)|(0 0) = / Z(tI‘ SAaath)'l']n,
and
2 1 _ _
3oy V08 )00 =5 /Mz'(trrAaawhs+trsA68whr)n"

- / i(br sADA,, r)n™;
M

(the last equality follows from the assumption Oy O™ = 0). It is
clear that by rescalling it is enough to prove (3.6.4) for the case z = 1.

Of course,
2

0?
Ve((z +9)r)0,0) = 35 Valer)

dxdy dr?
Since
0? 0% n
8—2-Vh($7‘)l1 = 5—2 <r, Aa 2<I>[:177‘](8wh >n
~ / <, AT (@.ar) > 7,
M
where
82 2 H—A
B, p) i= 5522 0(), op) = &
ifr=C"1AC,

C(¥[r)(8,,T))C™" = 8., A + e 4[A,D,,CC et
=e (8., A+IA,0,,CC e
and consequently

Ulr)(Ou,r) = €70, 7€" = Oy T
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Thus
62 62
5 Velar)e = [ itrrAd0, r” = 5o Vi ()00
From (3.6.4) it follows that %(Vh((x-{—y)r) —Vhesr (2 +9)7))jy=0 = 0.

(a) Passing from z to © + y, gives

%(Vh((m + Yo + Y)7) — Vaetarvor ((Z + y)7))jy=0 = 0.

(b) Passing from h to he®” yields

a%(vheu((yo T 9)1) = Vastessor (& + 9)r)) 0 = 0.

Therefore

%(vh((x L)1) — Vaer (7)) s = O,

which implies that
(3.6.5) Vi((z + y)r) = Vi(zr) + Vi9er (yr)-
Let f(z,y) := Vi(zr) + Vhesr(ys) — Vi(loge® e¥®). Then clearly
f(0,0) =0, (0, ) f(z,0) =0.
Moreover, (3.6.3) implies that _— y( ) = (0 so that

(3.6.6) f(=,y) = o(jzl” + [y]*)-

Consider the triangle T := {[;] ¢ R |0 <y < z < 1} and
let H: T — Herm(E) be defined as H[y] := he™e¥*; finally set
L:TxT — Ras L(p,q) := M(H(p), H(g)). Then the following hold:

(a) (3.6.5) is equivalent to saying that, for given pi,ps,ps € T on
the same line,

L(p1,ps) + L(p2, p3) — L(p1,p3) =0,

and consequently, given any pi,ps,ps € T, if we choose ¢;, on

the line p;p; and ¢, on the line 7,73,
&

A2

4
by

by
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then

L(p1,p2) + L(p2, ps) — L(p1,ps)
= L(py, q1) + L{q1, ¢2) — L(p1, 42)
+ L(q1,p2) + L(p2, ps) — L(q1,ps3)
+ L{q1,p3) — L(q1,92) — L(gz,p3),

i.e., we can reduce the problem to smaller triangles.

(b) From (3.6.6) it follows that there exist two positive constants C
and K, depending on r and s, such that, for any € > 0, there
exists § > 0 such that, if p;,p,,ps € T satisfy

(a): d(pj7pk) <€71Sjak§3)
(B):  C'd(p1,p2) < d(ps,p3) < Cd(py,p2),

(7):  d(p1,p2) - d(p2,ps) < Carea(pr,ps,p3),
then

L(p1,p2) + L(p2,p3) — L(p1,p3) < €K area(p:,ps,p3)-

Taking arbitrary small triangular nondegenerate subdivision, we can
easily conclude that f(1,1) =0.

As a consequence of Lemma 3.6, we obtain immediately

Corollary 3.7. s ¢ S)(E) is a critical point for V; if and only if
k:= he* corresponds to a Hermite-Einstein structure.

We also have

Corollary 3.8. If E is J-simple, then there ezists at most one (up
to homotheties) Hermite-Einstein structure on E.

Proof. Let h, k be two Hermitian structures on F and let k := he;
clearly, we can assume s € S?(E). Then set hy := he!*, 0 < t < 1. A
direct computation gives

d? = 1o

SSValts) = sl
in particular, it follows that if both h and & satisfy the Hermite- Einstein
condition, then 0s = 0. q.e.d.

As a general result, let us mention also the following:

Proposition 3.9. Any J-holomorphic line bundle F admits a
Hermite- Einstein structure.

Proof.  Let h be any Hermitian structure on F'; then K! = 1Al for
X e C®(M), and if k = e*h, then K} = K1 +i(0p)l = i(x + Op)l,
where, of course O := iAdy Iy
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Now,

/K:,;llnﬂ = k(F) Voly(M) and consequently /(k(F) — A" =0.
M M

It is possible to find p such that Ou = k(F) — X and clearly K.} =
ik(F)I. q.ed.

Finally, we have:

Proposition 3.10.  Assume E is equipped with ¢ Hermite-Einstein
structure. Then the following hold:

(1) If Oeg(E) < 0, then E admits nonon zero J-holomorphic sec-
tions.
(2) If Deg(FE) = 0, then every J-holomorphic section of E is parallel.

Proaf. Assume 0o = 0. Then
OmOulof A = (|00[* ~ k(E)lo )",

and so

[ et - kB)loPI =0.
M
Hence the result follows immediately.

4. Stability and existence of Hermite-Einstein structures

Let (M, Ju,g) be a compact n-dimensional almost Hermitian man-
ifold whose Kihler form 7 satisfies 9p;0yn"~! = 0, let H, denote the
s-dimensional Hausdorff measure let (E, J ) be a complex vector bundle
of rank r over M, and let J ¢ B(C(E)). Consider the following class of
objects: F ¢ F(J) if

[1]  there exists a closed subset S C M with Hz,_4(S) < +oo,
such that Fyns is a J-holomorphic subbundle of i s;

[2] for any z ¢ S, and any local J-holomorphic curve K through
z not contained in S, Fix_y.} extends to K as subbundle.

Note that, by a result of Nijenhuis and Woolfs [7], given any complex
tangent vector to M, there exists a local J-holomorphic curve tangent
to it .

In the case n = 2, we can assume F(J) to be the class of J-holomorphic
bundles F' on M for which there exists a J-holomorphic generically im-
mersivemapi: F — E .

If F e F(J), it is easy to see, by slicing and then using Fubini’s
theorem, that the corresponding section 7 of E* ® E is in L2, and so it
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is possible to define deg(F'), according to the Chern-Weil formula, as

deg(F) := / (< im KL > —(Brf)n,
M

where h is any Hermitian structure on FE. Clearly if F is regular, by
Codazzi-Mainardi equations, this definition coincides with the one given
at the beginning of Section 3.

We set the following definition.

Definition 4.1. We say that E is J-stable (resp. J-semistable) if,
for any F € F(J), with 0 < rank F' < r, we have:

u(F) < p(E) (resp. u(F) < p(B)).

We first have

Proposition 4.2.  Assume E is J-simple and admits a Hermite-
Einstein structure h. Then E is J-stable.

Proof. Let F ¢ F(J) with 0 < rank F = p < r, and let 7 be the
corresponding section of E* ® E. In general, we have

/<z‘7r,Kj;} >7]"=/<i7r,Hwh>n"+/<7r,k(E)I>n”
M M M

= / <im, Hy, >n" + 2mpnu(E),
M

and so
1 . 3,12\,
pu(F) —N(E)+%A/4(< im, Hy,, > —|0n*)n".

Consequently, if H,, =0, it follows that u(F) < u(E) where the equal-
ity implies that F' corresponds to 7 satisfying D,,m = 0 so that 7 is
globally regular and E = F & F' J-holomorphically, contradicting J-
simplicity.

We are now in position to state our main theorem.

Theorem 4.3. Let (M, Jiy,g) be a compact n-dimensional almost
Hermitian manifold whose Kdhler form n satisfies 0p0pn™ ' = 0, let
(E,J) be a complez vector bundle of rank r over M, and let J € B(C(E))
such that E is J-stable. Then there ezists a unique (up to homotheties)
Hermitian structure h on E satisfying the Hermite-Einstein condilion
H, =0.

Proof. The general lines of the proof are the following. Investigate
the existence of a Hermite-Einstein structure via the heat equation, show
that the only possible obstruction to the solution is the existence of a
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weak J-holomorphic subbundle, and then obtain the result by proving
the regularity of weakly J-holomorphic maps.

Fix a Hermitian structure h such that tr H = 0 where H = H,,, .

We consider the evolution equation

4 d
(4.3.1) h; laht = —H,,
which is a parabolic equation. By the standard theory of parabolic
equations, there exists a T' > 0 such that (4.3.1) can be solved for
te[0,TT;
let {h;}iepo,r; be a solution with kg = h. Set g, := hj'h, we have
Lemma 4.4.
(1) For every te [0,T[ , we have trlogg; = 0.
(2) || H |l s a monotone decreasing function of t and thus, in
particular, there exists C; > 0 such that for every t ¢ [0,T[ , we
have

(4.4.1) | H, [oo< Ch.

(3) Vi(logg:) s a monotone decreasing function of t and thus, in
particular, there exists Cy > 0 such that for every t € [0, T, we
have

(4.4.2) Vi(log g:) < Cs.

Proof. (1) and (2): From h;' 4£h, = —H, it follows £ H, = —, H,
and so

{ (A+4)4r H, =0,

(A + 4)|H,|* = —2|0,, H,]* < 0.

Therefore (2) follows directly from the maximum principle;
this gives also tr H; = 0.
Finally,

d d
laht = Etrloggt, trloggo = 0.

(3) Consider £V,(g:). Because of Lemma 3.6, we only need to
compute
it for £ = 0 and so we easily obtain

d
GVile) = = [1H P <0
M

0=—trH,=trh,
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Therefore Donaldson’s functional is decreasing along the given path.
Corollary 4.5. There exist constants K; > 0, K, > 0 such that, for
every t € [0,T[, we have:

(4.5.1) | log g: lloo< K1 + Ko || log g: || -

Proof. The desired estimate follows from the following three facts:

(a) If f e C°(M) satisfies Af <k, then || f ||co< c(k) || f Il1-
(b) If g = 'k, then we have Alogtrg < 2(|H,,|*> + |H,,|?)-
(c) If g € Si(E) satisfies trlogg = 0, then

|log g| < Cllogtrg| < A+ Bllogg].

Only (b) deserves some further comments. We start from

iADD,, g = iAO(99™ "0, 9) = ig(H,, — H,,)+iA(Og A g "0..9).

Therefore
Atrg <(|H,, |+ |Ho,|) trg + iAtr(Gg A g710,, 9)
=(|Hu,| + |H,,|) trg — [9gg™/* %,
1. e.,
Atrg + 099 ** < (|H,, |+ |H,,|) trg.
Since

trgAlogtrg = Atrg + |dtrg|*(trg)™?
= Atrg + | tr(ggg—1/2g1/2)|2|g1/2I—z
< Atl‘g + |5gg_1/2|27

we obtain (b).
Now, there are two possibilities:

(1) There exists K > 0 such that , for every ¢ ¢ [0, 77,
Il log g¢ l|oo < K.

It follows that g; — ¢ and g corresponds to a Hermite-Einstein
structure.
(2) limsup || log g; ||l:= +oo.

Assume we are in case (1). Then g — gr. If T < +o00 , by the
theory of parabolic equations we can extend {g;} to [0,T + ¢[ for some
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e and so T = +00; g corresponds to a Hermite-Einstein structure; in
fact, for any s £ S(F), we have

Vi(s) 2 = [lsllBl" + [ < 5, AB@[5](0un5) > 7"
M M

- / Is||H|7™ + / < 5,®[s](8,, ) > NI
M

M

+A/4 < [s](Fs),3s > "

Since

< C' s lleoll 95 113,

|A/4 < 5,®[s)(8,,s) > AOp"

from || log g; [|c< K for every t ¢ [0, +o0], it follows that ® > C > 0 on
the range of the log g;’s, so that

[ < @logg)@log.0), Blogg, > 1" 2 C | Floga. I3
M

Therefore, there exists A > 0 such that , for every ¢ £ [0, +o0],
Va(logg:) > —A.

Consequently,

(a) from [J |[H:|?dt = —V,(logg,), it follows [J° [H[?dt < +o0
and, in particular, tlg_n || Hy |l2=10;

(b) [ < ®[logg:](Ologg,),Plogg, > n™ < K' uniformly on ¢ and
M
so || Ologg: ||> and || Bg, ||» are uniformly bounded.

Thus it follows that , up to subsequences, g —* g in L? and H,, = 0;
the standard elliptic regularity implies that g, is smooth.

Assume, from now on, we are in case (2).

In particular, we can choose (Cy,), Cr, — +00 and (t,), tm —> +00
such that

i) | logge, lli—> +oo,
it) | logg,, > CnVia(logge,.)-

Let v, :=| logg;,. |1 and s, :=v;'logg;,.. Then

fsmlli=1 and | sm o< K.
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Now
|| log g:,.. 111>CnVi(loggs,.)
=>ium/ < Sm,H >n"
M
+ an/ < ®UmSm](08m), 08m > 7"
M
+ V,Zn/ < 8ms @[VmSm) (0o, 8m) > AOR™!
M
(4.5.2) <C:lvn,.
From

Vi < O[Vm8m](08m), 08m >>< @[5,)(08m), O8m >
and the fact that

. / < Sy B[] (Br 5m) > AT < K7 || D5 |l
M

uniformly, it follows that

/ < ®[5]@5m), D5 > 1" < Ko+ K' || Bsim || -
M

Since ® > C > 0 on the range of the s,,’s, we obtain
| 8sm |13< K1+ K" || B3y ||, ice., || Osm |2< K.

Finally, passing to a subsequence, s,, converges weakly to u in L?;
clearly, ¢ is nontrivial.

A close examination of the convergence leads to

Proposition 4.6.

q
= AeDs,
k=1

(@) ¢>22, MeR 1<k<gand <..<JM\g;
(b) pr=p] =p}, 1<k<q, ppj=0up;, 1<jk<qand

e
e
E

I

J —
() m;:= Y pi satisfies (I —n;)0n; =0, 1<j<gq;
k=1
(d) for at least one 3,1 < j < g — 1, we have pu(n;) > p(E).
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Proof. Set 8y := d,,. Recall that, given a positive definite
g e Sy(E), if g = C~1erC, then:
(4.6.1) 8 log g = C1(8A + [A, P))C,
(4.6.2) Odlogg = C~*(0A + [A, Q))C,
(4.6.3) g 18,9 = C7Y (A + P —e A PeM)C,
(4.6.4) g 189 = C*(OA + Q — e 2Qet)C
with P := 8,CC~! and Q := 6CC~!. Consequently
(4.6.5) |86 log g = [(GoAl* + |[A, P]?,
(4.6.6) |g7100g|® = |GoA|> + |P — e~ A Pel2.
moreover
(4.6.7) (A, PP = 3" (Aa = 26)*(1Pagl® + |1 Fpal®),
a<fg
(4.6.8)
[P — e PeMf = 30 (1 = ¢4 3) Pogl? + (1 — €7%) Py,
a<f

< Bologg, g710g > =D (Aa = Ap)(1 — €¥72)|Pup)® + |BoA|?
a,0
(4.6.9) > BoA

and similar equation for 8. Therefore, we obtain that, for any k ¢ Zt,
we have:

d(log g)* = C™1(8,A* + [A*, P))C,
| tr 5 (log 9)*| < |log g|**BoA| < |log g|*~" < Bologg, g7 g >'/*.
It follows immediately that along the heat flow,

[t o(t0g g0 1"
M

(4.6.10)

1/2

< C' | logg, |5 (/ < 8y log g;, 9; " Bogs > n")
M
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On the other hand, along the heat flow, we have

(#611) [ <ologg.g 't > 7" <K [loggdn.
M M
In fact,

/ < Bplog g:,9; ' Bog: > 1
M

< log g, 95 (9; ' Boge) > 0"
< log g:,iAd(g; " Bogs) > 1™

<logg:y, H — H; > 70"

Il
E:\ 3\ E\

K/ log g:|n™.
M

Substituting (4.6.11) in (4.6.10) yields

1/2

/Itr Ao (log g:)*|n™ < C" || logg: ||5* (/lloggtln") ;
M M

in particular

J1x@otsml < Cvztt o,

M
which implies that
O tru® =0,

q
and u has constant eigenvalues. Hence we can write u = ) Aypx, which
k=1
gives directly (a) and (b). Moreover, if we write u = D™'AD, then dpu =
D7 1[A,8,DD7|D and so < u, ®[u](8yu) >= 0 because D®[u](ou) D!

is zero on the diagonal. Consequently,
s n—1
Jim [ < s, D[sm](Bosm) > NOR

= lim [ < 8m, Un®Vmsml(Gosm) > A1 =0.

m—r00
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Moreover,

m-—+00

Vi(u) = lim (/ <ism,H >n" + / < B[5,](051), 05, > 1™
M M

+ / < S Vs B[V (B 800) > /\37;"_1)
M

m-—>00

< lim (/ < i8m,H >n" +/ < U@V 5m)(08m), 08 > 1"
M M

+ / < Sy Vm @ [VmSm) (0, Sm) > /\677"'1) <0.
M

In the same manner, if A ¢ C*°(RxR, R) satisfyes A(A, u) < (A—p)~ !,
whenever A > u, then

(4.6.12) / <iu,H >+ / < Alu])(3u),3u > 7" <0.
M

In fact, for m sufficiently large, on the range of the s,,’s we have:

Vi < ®[UmSm](051),08;m > > < A[s1](08:m),08m >,

and so
/ <iu,H >n" +/ < A[u](du),0u > 0"
M M

m-—+00

< lim (/ <iSm,H >n"+ / < umé[umsm](gsm),—a-sm > n")
M M
<o.
J
Now let w; := 3 pi and, for a suitable 6 > 0, let
k=1

‘Mm)—{ 0 ifo> Ay =6,

i(z) = { 1 ifz> Ay — 6.
Then, of course, ¢;4; = 0 and ¢;(s,) — 75, ¥j(Sm) — I —m; in L2,
We want to show that

(46.13) [ 186 (s (sl — 0.
M
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At first we see that if logg, = C(m)A(m)C(m) and By = BOC(m)C(m),
then

(4.6.14) 18063 (5m) 5 (5m)| Z > IRP.

a=18=j+1
Fom (4.6.11) taking (4.6.9.) into account, we obtain, in particular,

[t SO A - 7P P < K.

‘M a<f

If o < B, then clearly (Af™ — AgV)(1 — X" 7Y > (A — AG™)2 and
SO

/_22 Am /\(m) |P(m)|2n”<u K.

‘M a<fB
Since v (A — XY 5 A, — A4, we have immediately (4.6.13.).
m o 8 B

g-—1
(d) Write = AT — Z(/\j+l — Aj)7;

j=1

-1
T :=)\0eg(E) — qz (Aj+1 — A;)0egm;, then
j=1

T= /<zuH>77 +/Z i1 — Aj)[0m;) P

M=t

S

-1

= (Aj+1 - Aj)/(lgﬂj|2— < i?Tj,H >)7]n
M

=)

j=1

2,
I

<iu,H>n" +/ Z 41 — Ag) (09;)% (U] (Ou), u > n™.

E\

Tet A ) = 5 (hjaa = A1) (6, (). Then A\, ) < (A= )™ for
j=1
A> pu,and T <0, as a consequence of (4.6.12). Thus
/(|5wj|2— <in, H > <0
M

for at least one 7,1 < 5 < ¢ — 1. Since

p(m;) = u(E) + (27n - rank'zr]-)“l/(< in;, H > —|0m;|*)n™ > p(E),
M
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we can achieve the proof of Theorem 4.3, if we can show that 7; ¢ F(J),
contradicting J-stability; this will follow from some general results con-
cerning the regularity of weakly J-holomorphic maps, that will be proved
in the next paragraph.

5. Regularity of weakly J-holomorphic maps

In this section we prove Theorem 0.2. Let (M, Jy,g), (N, Jn,h) be
two almost Hermitian manifolds with dimg M = 2n and assume there
exists a closed 2-form « on N such that

(a) o’ >0;
(b) there exists K > 1, such that , for every z ¢ N and every
X, Y e T,N, we have

(5.0.1) KX [aY]n < |a(X,Y)} < K| X [a[Y ]

Given 0 : M — N, we can define _531"0 as the section of
ANOIM ® o~ (TYO°N) given by

55,,0(X) 1= Sdo(X + iy X) ~ iJydo(X +iT X))

Similarly, we can define 85 _o. Clearly do = BSMU-I—%-I—_B—(;MU-I—?}MJ,
and o is (Jar, Jy)-holomorphic & EgMo— = 0.

We can embed N into RV isometrically. We recall that a L2-weakly
(Jar, Jw)-holomorphic map f : M —» N is a map for which there exists
a sequence {f,}mez+ of smooth maps f,, : M — RY such that the
following hold:

(a) both {fm}mez+ and {dfy }mez+ converge in L2(M,RY) ;
(b) lim f,, = f and f(z)e N forae. ze M ;
m—oo
(c) if we define df := lim df,,, then, for a.e. z ¢ M,df sends T-°M
m—o0
into T}(’g)N.

For reader’s convenience we restate Theorem 0.2.

Theorem 5.1.  Let o be a L?-weakly (Jar, Jn)-holomorphic map.
Then, there exists a closed subset S C M with Ha,_4(S) < +00, such
that o is smooth on M\S; moreover, for any = ¢ S and any local J-
holomorphic curve K through x not contained in S , o\k_(s} extends
smoothly to K.

The proof of Theorem 5.1 is broken into a sequel of steps.

First of all, since the result is of local nature, we can assume M =
B;(0) := {z ¢ R*"||z| = 1} equipped with the flat metric and an almost
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complex structure J such that J(0) is the standard structure J, and, as
N C RY isometrically, consider o = (o4, ...,0x) as an RV -valued map.
We start with the following lemma.
Lemma 5.2. In the sense of distributions, we have

(5.2.1) Ao = O(|Val?),

where A and V are the ordinary Laplacian and gradient acting on com-
ponent functions.

Proof. At any z € B;(0), consider an orthonormal frame
{e1; y€nsenit, .y €2} With e,; = Jy(0)e;,1 < 5 < n. Since o is
L2-weakly (Jar, Jn)-holomorphic, for any 7, 1 < j < n, we have

(5.2.2) (I —idn)(ej(o) + ieny (o)) = 0.

Taking the covariant derivative in the sense of distributions in A M ®
o Y(TY°N), we easily obtain

(I —iJn)(e; — i€nt;)(€;(0) + ien;(0)) + O(|Val?) = 0
= (I —iJn)(eje;(0) + entjenti(0)) + (ejent;(o)
— eny;€;(0)) + O(|Va|?)
= (I —iJn)(eje;(0) + entjeni;i(0)) + O(|Val?)
= (eje;(0) + enyjents(0)) + O([Val?).
On the other hand

Ac = Z(ejej(a) + entjenti(0)) + O(|Val?).
i=1
Thus Lemma 5.2. is proved.
Let, as usual, B,(z) be the ball of center z and radius r in R**, and
set

EO©) = [ Vofr, Ei(o) = B(0),
B, (x)
7 being the standard Kahler form in C*. We have
Lemma 5.3. (Energy Weakly Monotonicity Formula) There
exist ro > 0,C > 0 and a smooth function €(r) — 0 with r such that,

for every € B1(0) and every 7,p,0 < 7 < p < min{ry, 1 —|z|}, we have

14+ Cp? n 1+ Cr? n
p2n—2p / IValzn > (1 - 6(7‘))?1—_2— / |VU|2 ;

By (z) B (z)

(5.3.1)

in particular, lim r*=* [ |Vo|?n™ ezists.
r—0 B.(x)
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Proof. If Jy is the standard structure in C* and we set

—=0

50 (X) = i[da(X + 0o X) — idwdo(X + i X)],

then
(5.3.2) 530 =3% + 78% + 70 o,

where, clearly, 7a(X) := o((J — Jo)(X)) and so 7(z) = O(|z|). For
simplicity, we assume z = 0. Then, from (5.3.1) it follows that there
exists Cp > 0 such that in B;(0) we have

(5.3.3) ‘ |0c|? < Cpl8%|?.

First of all, we have that if r is sufficiently small, then there exists B
such that, if 0 < 7 < p < r, then for a. e. z € B,(0)\B,(0),

(5.3.4)
o*(a) A ((081og |2|2)"~! + Co((081og |2|*)"~2 A 83|2|?)) > 0

In fact, without loss of generality, we can assume that z = (2,0, ...,0)

so that
— 1 & _
68 10g|z|2 = WZCZZJ' A de.

=2
Consequenltly, a direct computation thows that :
(a) o (2)A(8log|z|*)"!

>(n — 1)![[2= (K 2(92, of?
— K|9,,0* - 2(K — K™1)|8%, 5118, 0])

>(n — D[220~ (K188, o — K8, 0f?
— 2(K — K~1)(C7Y18%,0f? + C[8,,0/%))

=(n - I[P (K™ — 2(K — K~1)C™)|8, of?
— (K +2(K ~ K)0)[8,,0/),

(b) o*(a)A(30log|z|*)" % A 89)z)?
> 22022 (K%
— K302 — 2(K — K71)|8%18"0))
+ (n = 2)|zP0 (K 180,0[* — K|D,, of?
~ 2(K — K~1)[8%,01[0;,01).
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If 7 is sufficiently small, from (5.3.3) it follows that
o*(a) A (901og |2*)"72 A 9B|2f* > Cy|zP 7™ (|2[*|8°0 %),
so that if C > 2K(K — K~') and B > (n — 1)!ICT (K + 2(K — K1),
then we get (5.3.4). Using (5.3.4) we obtain:
0< / 0% () A ((88log |2]2)™ + C(81og |2|)2 A 60|22
B,(0)\B-(0)
— / o* () A ((Blog 2|2 A 88 log |2*)""!

bB,(0)

+ C((Olog |z|> A 88log |2|?)" % A 89|z|?)
— [ o"(@) A(@log 2P A 5F10g 2)

bB.,(0)
+ C((8log|z|* A 8D log |z|*)" "2 A 9D|z|*)
1 + sz * 0 ¥a) n—
=t [ 0@ DLz A (3Blaf?)
bB,(0)
1+ C7? . = N
- m o (C!) A 6IZ|2 A (66|Z|2) 2
bB.,(0)
1+ Cp? . — ovpe
— [ o*(@) A (@312
B,(0)
1+C7? . = ovne1
-t [ o@ A @Bl
B-(0)
_1+C = . 1+C7° = n
ol [ oot~ Bof - 52 [ (oot - @of)n
B,(0) B.(0)

Let §(z) := JIB—IF( )Then

1+Cp? 2m > 1+Cr? ( ) 2,
S ((1+52)|VI >0 [ (555 )1Vl

B (0)

»

Finally, in order to obtain the required inequality we choose €(r) in such

a way that 1 —e(r) < Blr%g)hgz

The next step is given by
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Proposition 5.4. There exists ¢¢ > 0, independent of o, such
that, for any = € B,(0) and any r < 1 — |z|, if r>"E®@(0) < ¢,
then o is Holder continuous in B, :(z), and moreover there exist posi-
tive constants o and C, independent of o,z and r, such that for every
z,w € B,s(x), we have

l0(2) — o(w)] < Clz - wl*.
Proof. The proof will follow closely Schoen-Uhlenbeck argument for

weakly harmonic maps [8]. Fix ¢ > 0.

(1) Let ¢ € Cg°(B,(0)) such that Bf(o)gbﬁ" =1 and, for h €0, 3],
let

W)= [ $)ola—hyr @)
B; (0}

Then from the basic estimates of Lemma 5.3, it follows directly
that, if hy = €, then:

(a) forany he]0,h]

Vo ®Pn* < cEy (o),
By /2(0)
()] sup |o(h°) (z) — a(hu)(0)| < chg.
1631/2(0)

(2) Let r = ¥/e; and assume § € |7, 3[. Let h = h(r) be a smooth
nonincreasing function satisfying:

{ h(r) = he ifr <8,

h(r)y=0 ifr>6+r, |h'(r)] < 27,
and set:
o(h@)(@) = [ $"D(z -y,
B; (0)
finally,

Oh(zx) (:L') ‘=po a(h(Z))(x),

where ¢® () := h=?"¢(z/h) and p : T(N) — N is the smooth
nearest point projection map from a tubular neighborheod.
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Then we have the following:

(c) one Li(By2(0),N);
(d) on=0 on By3(0)\Bys-(0);

@ [ vaPrse

[Vol*n™.
Bosr (0)\Bo(0)

Bg42-(0)\Bs—~(0)
(3) Let v:B;(0) — RY be such that

{ Av =0 in By(0),
(v — )y, 50) = 0.

Then by the previous estimates we obtain immediately:

(f)  sup |v—o™)? < ey/eg;
B, 2(0)

(g) sup |[Vou* < 1By 2(v) < c2Ei (o).
By ,4(0)

Now, for any 8 ¢ ]0, [, we have:

2

02—2nE0(U(ho)) nn

=g2-n / ‘V(a(’m) —v) + Vv
Ba(0)

2
.<_02—2n / ‘v(g(ho) —'l))

Bg(0)

nn+02—2n / lv,UlZn'n’
By (0)

which together with (g) iimplies that 62-2"Ey(v) < ¢;,6?F; (o) and

/ ‘V(a(’w) —v) 2

B (0)

2
n

n

"< /\V(o"”)—v)

B1/2(0)

_ / (o) — y)Agth)yn
B1/2(0)

SC?’% / ’Ag(ho)

B,/2(0)

n".

Now,

Aot (z) = = [ (@ — ) Ao ()" (v).

R2»
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From (5.2.1) it follows directly that

/ ’Aa(ho)

By/2(0)

n" < ey By (o),

so that for any 6 € 0, 1[,
0P By (on,) < s(677" /6o + 67) B (0),

since Eg(op,) < CEy(o™)). Let v = v(n) € ]0,27%[, 6, = ¢j, and
p = [06(37)71], write

P
[60,60 + 3pr] = (JI;, with I; = [0+ 3(j — 1)7,00 + 357],
Jj=1

and note that p > ﬁ — 1. Since

p
lvalz n ZZ / lval2nn < Ei (o),
By 3,-(0)\Bs(0) J=1.% I
there exists at least one j,,1 < j9 < p, for which
/ IVol>n™ < p™'Ei(0) < cs ¥eo Fr(0).
TE Iio

Let 8 = 65+ (3(jo — 1)+ 1)7 and so I;, = [0 — 7,6 +27], and let h = h(r)
as in (2). Then
on € Li(B1/2(0), N),

on(z) =o(z) for |z| >0+,

|Voul’n™ < c / [Val|®n™,
re[0,0+7) rel;,
and consequently
Vouln™ < e, e (o).
re[8,0+7]

Since o and o0, are homotopically equivalent, it follows that
Ey.,(0) < CyEyy.(0p), and therefore

Ey(0) < Epy-(0) < cgEoy-(0n) < cgEy(on,) + ¢y e Er(0).
Thus for 6 ¢ [6,,26,],
2" ) < calO3 e + O2) (o)
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in particular,
0272 Ey(0) < cro ¥eqe?® ™ 4 £27) By (0).

If v = min{(32(2n — 2)) !, 6471}, then 63 *"E,(0) < c10e3” E, (o). Con-
sequently, by choosing €, such that ¢;qe2” < % we obtain the following:

(h) There exist constants €, > 0, and 6, € |0, 1[, independent of
o, such that, if E;(0) < gp, then

1
85" Ey(0) < EEI (0).
(4) Set 04,(z) := 0(f6z). Then by (h) we have
By(0s,) = 622 By, (o) < %El () < €.

Iterating the procedureyields for any nonnegative integer &.
(65)*7*" Egs(0) < 27" Eq(0)
Now, given any ¢ ]0, ], there exists & > 0 such that r ¢ [651", 6%]. If
a = (log2)(—2log6y)~?, then
(65)°"*"Ex(0) < (63)**Ex(0),
and therefore
> E.(0) < 65%*r*Ey (o).

Hence Morrey’s lemma completes the proof of Proposition 5.4.
Corollary 5.5. Let S := Sing(o); then Hy,_»(S N By/2(0)) = 0.
Proof. Let z € S; then, simply by rescaling, we obtain, for any

A<1—|zl,

(5.5.1) 22 / Vo™ > e.

Bi(z)

Let {Bs(z1), ..., Bs(z,)},p = p(d), be a maximal family of disjoint balls
with z,...,z, € B1/2(0) N S, then by the maximality we have

SN Biy(0) C 0325(%')

=1

and, in consequence of (5.5.1),

(5.5.2) pé*n? < eo/|Va|217" < ¢'Ei (o),
As
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where As := OBg(:Bj). Therefore
j=1
Han-a(S 1 Buya(0)) < C [ Vol
As

From (5.5.2) it follows that #H.,(A4s) < C&%*E; (o), and thus, by the
dominated convergence,

. 2. n __
}%/lVﬂn —0.
As

Hence Ha,—5(S N By/2(0)) =0. g.e.d.

Note that o is C*®-smooth in B;(0)\S since o satisfies (5.2.1).

For further developments, we need

Lemma 5.6. (Energy Comparison) Let o be a L2 -weakly (Jar, Jn)-
holomorphic map and assume dimg M = n > 1. Then there exists
Co > 0 such that, for z € By(0), any 7 < 1 — |z| and any L3-map
0o : B1(0) — N with oojsB,(z) = OB, (2), we have:

Ef)(0) < CoB)(0).

Proof. Glue together two copies of B.(z) in order to obtain a
2n-dimensional sphere S. Then interpretate o and o, as
¢ = (0,00) € L2(S,RY), and let ¢,, — ¢ be a smooth approxima-
tion. Clearly, for every m ¢ Z™,

/ $r(a) A" =0,
S

and, consequently,

which implies that
B0 <Gt [ or@ant =6t [ oj@) ant < GE0).
B.(z) B (z)

q.e.d.
Now we can quote the following general result [8].
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Lemma 5.7. For any z ¢ By(0), any 7 < 1 — |z|, and any
7 ¢ L3(B,(z),N) set

n@= [ =)
B, (z)

and
W)= [ =P
B.(z)

Let K C N be a compact subset. Then there exist § and q such that, for
any € ¢ 10,1 and any 7 € L3(bB,(z),K) such that

r4_4"E£")(T)WT("”) (1) < 6e?

there ezists ¥ € L2(B,(z), N) such that:

>

0) B, (2)
B B £ ClrB ) e W),
141) W D(F) < CetrW ) (7).

=

Remark 5.8. As a consequence of Lemma 5.7, we can improve
Proposition 5.5 as follows (cf. again [8]): there exists ¢, > 0, indepen-
dent of o, such that, for any z ¢ B;(0) and any r < 1 — |z}, if

(5.8.1) ro W) (o) < €,

then ¢ is Holder continuous in B, /3(z), and moreover there exist posi-
tive constants o and C, independent of ¢,z and 7, such that for every
2,w € Brja(x), we have

lo(z) — o(w)| < Clz —w|®.
In fact from Lemmas 5.6 and 5.7, we obtain immediately
E®)(0) < CoE®(8) < Cy(erE® 4 e W) (0))

and so (5.8.1) leads easily to r>~2"E{®)(¢) < €. Finally we use Propo-
sition 5.4.

We are now in a position to prove

Proposition 5.9.

,Hzn_4(S) < +o00.
Proof. Let seR s <2n—2, and ¢°(S) = inf{%:rﬂs C LjJBTj (z)}
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Assume ¢*(S) > 0. Then a basic density lemma in geometric measure
theory ensures that for a.e. z £ S, we have

limsup A7 (SN By(z)) > C > 0.

A0
Therefore it is possible to choose zo5 = 0 £ S, A, — 0 in such a way
that:
(1) nlgxolo AP (SN By, 2(0)) >0,
(2) o, = 0 weakly in L(B;(0)) .

Clearly o, is weakly J-holomorphic with respect to the standard inte-
grable structure of C*, and moreoverby Remark 5.8, if S, := Sing(o),
then o, — 0. uniformly on compact subsets of B;(0)\S,. Let
S, 1= Sing(oy, ). Then

(5.9.1) $°(Seo N By/2(0)) > limsup ¢*(S, N By2(0)).

n—oo

In fact, for any 6 > 0, let {B,(z1),...,B; (z,)} be a covering of
S N By/2(0) by balls satisfying

Xq:r;. < ¢°(Soo N By 2(0)) + 6.

Jj=1

Consider A := B, ;(0)\ LqJ B,,(z;). Then for n sufficiently large, o, is

q
smooth on A. Consequently S, N By,(0) C U B,,(z;) and
j=1

¢°(Sn N B1/2(0)) < ¢°(Se0 N By1/2(0)) + 6,

which implies (5.9.1). Clearly, S, N By,2(0) = {z/A.|x € SN By, /2(0)}
and so

$°(Sn N By1/2(0)) = A;°¢°(S N By, /2(0)).
Therefore, from (1) it follows that nlggc $°(SnN B12(0)) > 0 so that, by
(5.9.1)
$°(Soo N B1/2(0)) > 0.

Now we have

(5.9.2) / o, (@) A (8B1og |2?)*! = 0.

B;1(0)
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In fact,
T2—2'n. / |v0.°o|277n =1}LIEOT2_2n / |V0.,\n|277n
B-(0) B-(0)
=nli)r£10(r)\")2‘2" / |[Vo[*n™ = const .,
Bx,-(0)
and
/ 0%, (@) A (88 log|z)* =lim / o* () A (88 1og |2[?)"
Bl(O) Bl(o)\Br(O)
s 2,0 _ n2—-2n 2.1
_ll_r%( / |[Voo|?n™ —r / Vool 77)
B, (0) B1(0)
=0.

It follows that o is complex homogeneous. In particular, a—gf =0 a.
e. and thus AS,, C S, for every A.
Now, there are two possibilities:
(1) s <0 : then, there is nothing to prove ;
(2)  there exists z; € bB3/4(0) such that
limsup A™*¢*(S N Ba(z1)) > 0.
A0

we can choose complex coordinates centered at z,, in such a way that
Rez is radial. By repeating the previous argument, we obtain o(})
satisfying on Bj /»(z;)

1
8ot ),

or = 0’
as) 901) _
8z1 - 8n

By iterating the procedure, eventually we get m,s <2m <s+2 <n
and o2, weakly J-holomorphic, satisfying on B (x,,)

8o (™)

or = 0’
dalm) 8o () -
20 = %0 —

0z; 0z; 0’ 1 < J S m.

If 2m = 2n — 2, then S2 O {2z, = 0} N By3(@n_2) and this is a
contradiction because H2H_2Sgg—2) = 0. Consequently 2m < 2n—4 and
finally Hapn—4a(S) < 400 .

Since Proposition 5.5 gives, in particular, that ¢ is smooth along
J-holomorphic curves, the proof of Theorem 0.2 is complete.
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We can easily deduce from the proof of Theorem 0.2 a special regu-
larity result; consider first the following.

Definition 5.10. A rational curve in an almost complex mani-
fold (N, Jy) is the image of a noncostant (Jpy(c), Jy)-holomorphic map
¢ :P(C) — N.

Then we have

Corollary 5.11. Let (M, Jy,9), (N, Jx,h) as in Theorem 0.2. If N
has no rational curves, then any L2?-weakly (Jpr, Jn)-holomorphic map
0: M — N is regular.

Proof. Let x &£ M. As in the proof of Theorem 0.2, we can construct
O : C* —» N L2-weakly (Jy, Jy)-holomorphic, factor o, as 0o =
¢ o, where w : C* — {0} — P*"!(C) is the standard projection and
Han-6(Sing 9) < +o0.

Now,

Jyoyp,om,=Jyo (Uoo)* = (Uoo)* oJo

= 1/)* oM, O JO = 1/)* o JP"—l(C) O T,.

Since m, is surjective, Jy o 9. = 9, o Jpn-1(q), i€, ¥ is L} -weakly
(Jpn-1(cy, Jnv)-holomorphic. Let P'(C) < P* '(C)\Sing®. Then
w(P*(C)) is a rational curve in N unless v is constant, i. e., o is regular
at z .

As far as Theorem 0.1 is concerned, we simply note that the
L? -weakly J-holomorphic subbundles, which we constructed in Sec-
tion 4, correspond to L2-weakly J-holomorphic maps from (M, Jus,g)
to some Grassmann bundle Gr,(E). Certainly, if U C M is a sufficiently
small domain, then 75} C Gr,(E) can be equipped with a tamed Sym-
plectic structure just by approximating the standard Kahler structure
on U x Gr,(C"). Therefore Theorem 0.2 applies and the proof of The-
orem (.1 is complete.
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